Askia Data structure
As you know the current Askia Data structure creates a lot of tables and does not deal well with multiple questions with a lot of responses. Each grid creates at least one table… a multiple question with 160 responses would need 2 tables.
One of the other problems is the fact that any change to the questionnaire usually means a verification of the data structure… blocking any access to the database and a very fragile process because of its complexity.
Most databases deal well with queries over few tables so we are proposing the following data structure
New structure
I will describe the proposal and detail below the possible variations… as usual the devil is in the detail.
We have 2 tables – one table for logging all the peri-data or interview data… that’s the start and end of interview, IP address, geographical location, seed etc… and one table for the case data that is the responses to the questions (and time spent doing so).
Interview table – usually called AskiaNNNInterview where NNN is the id of the survey in askiaField.
Some fields have kept the same names as before (like CodeEnqueteur) which I do not believe is a good idea.
	InterviewNN
	Type
	Comment

	InterviewID
	AutoNumber
	

	AgentID
	Identifier (Number)
	

	StartInterview
	Date
	

	EndInterview
	Date
	

	Seed
	Number
	

	CallId
	Identifier (Number)
	

	IPAddress
	String
	

	Completed
	Boolean
	

	LanguageId
	Identifier (Number)
	

	Quotas
	String
	Need re-engineering

	QuotasToDo
	String
	Need re-engineering

	KeyStrokeCount
	Number
	Probably obsolete

	ErrorsOnVerifyCount
	Number
	Probably obsolete

	Guid
	String
	

	[bookmark: _GoBack]LastResult
	Number
	

	LastSubResult
	Number
	

	CallCount
	Number
	

	Revision
	Number
	

	… more to come
	
	

Data table – usually called AskiaNNNData where NNN is the id of the survey in askiaField.

	DataNN
	Type
	Comment

	InterviewID
	Identifier (Number)
	

	LoopID1
	Identifier (Number)
	

	LoopID2
	Identifier (Number)
	

	LoopID3
	Identifier (Number)
	

	…
	
	

	QuestionID
	Identifier (Number)
	

	DataOrder
	Number
	Use for multiple questions

	Duration
	Number
	

	ClosedData
	Identifier (Number)
	

	OpenData
	String
	

	NumericData
	Double
	

Depending on the question type, only one of the ClosedData or OpenData or NumericData field would be filled (or none for a chapter).
The LoopIDNN fields indicate in which loop a question is… the number of these fields should be the maximum depth of imbricated loops but we could leave it at 2 by default to avoid 95% of problems and only increase it when we need it.
Let’s give an example:
Q1 = Gender (male = 1, female = 2)
Q2 = Name (open)
Q3 = Age (numeric)
Q4 = Newspapers (multiple) (Guardian = 3,….,Times =7, … Daily bugle =9)
Loop5 = Sentences (question table, 1st sentence = 20, 2nd = 21, 3rd = 22)
-> Q6 = Agree with sentences (Agrees a lot=10, Agrees a bit = 11, Disagrees=12, Disagrees a lot=22)
	Interview
ID
	LoopID1
	Question
ID
	DataOrder
	Duration
	Closed
Data
	Numeric
Data
	Open
Data
	Comment

	1
	
	1
	1
	3
	2
	
	
	2 is the ModalityID for female

	1
	
	2
	1
	4
	
	25
	
	Age is 25

	1
	
	3
	1
	4
	
	
	Mary
	Name is Mary

	1
	
	4
	1
	5
	3
	
	
	First newspaper is Guardian

	1
	
	4
	2
	
	7
	
	
	Second newspaper is Times (no duration on following multiple)

	1
	
	4
	3
	
	9
	
	
	Third newspaper is Daily Bugle

	1
	
	5
	1
	
	20
	
	
	Sentence 1 was shown first (Modality ID of Sentence1 is 20)

	1
	
	5
	2
	
	21
	
	
	Sentence 2 was shown second

	1
	
	5
	3
	
	22
	
	
	Sentence 3 was shown third

	1
	20
	6
	1
	2
	10
	
	
	Agrees with 1st sentence

	1
	21
	6
	1
	3
	11
	
	
	Agrees a bit 2nd sentence

	1
	22
	6
	1
	5
	
	
	
	Disagrees a lot with 3rd sentence

Conclusion
Reading a whole interview will only take one SELECT… but writing an interview will probably need more INSERTs than before. But to make the CCA more responsive, it’s the reading we need to improve no the writing… so that’s not a bad thing.
There will be no more “verification of the data structure”… and none of the uncertainties associated with it… Multiple questions will be supported much more elegantly and efficiently.
The whole database will be marginally bigger… but much easier to maintain / archive or query.
