
Askia Training

Askiascript 2.0

Introductory training
Course 150

Participant’s Coursebook

Course 150: Askia Script 2.0 Introductory Training • Participant’s Coursebook

2

Contents

Introduction 5	
Format 5	

Module topics 5	
Preparation 6	

Course agenda and timetable 6	
Example questionnaires 6	

Preparing for face-to-face delivery 6	
Setting up the room 6	
Introductory presentation 6	

Checklists 6	
Preparing for online delivery 6	

Preparation 6	
Delivery 6	

Session 150-1	 Askiascript 2.0 Basics: Objects and
Operators 7	

Outline 7	
Tutorial 8	

What is a script? 8	
Scripts defined in the routing 8	
Questions as Objects 10	
Operators 12	

Recap 15	
Practical exercises 15	

Exercise 1: Using script to set a variable 15	
Exercise 2: Editing your script 15	

Session 150-2	Logical structures 17	
Outline 17	
Tutorial 18	

If …Then … Else structures 18	
Return statement 18	
Worked examples of If ... Then ... Else 18	
Comments 19	
Using Has, HasAll and HasNone in If blocks 20	
Expressions 20	
Return with logical or Boolean values 21	
Inline script 21	

Recap 22	

Introduction

3

Practical exercise 22	
Writing control structures 22	

Session 150-3	Variables and keywords 25	
Outline 25	
Tutorial 26	

Virtual variables 26	
Working with sets and arrays 26	

Recap 29	
Practical exercises 29	

Exercise 1: Creating question loops 29	
Exercise 2: Using Dim 30	

Session 150-4	Advanced Loops 33	
Outline 33	
Tutorial 34	

Questions residing in standard loops 34	
Loops within Loops 34	
Object methods for loops 35	
AllValues property 35	
For/Next Loops 35	
Break command 37	

Recap 38	
Practical exercise 38	

Writing script loops 38	

Example questionnaire 39	

Introduction

5

Introduction

Format
This course comprises five flexible modular sessions, which permit different
learning pathways through the training course. The course has been designed
for several alternative delivery methods, to offer maximum flexibility to
learners:

• As a taught course lasting a little under one day

• For online delivery as a series of webinar tutorials

• For one-to-one delivery (e.g. peer-to-peer training)

In each case, the course is delivered as a series of separate modules or
sessions. Each session is intended to last no more than an hour, though it
may take longer, if additional time is required to complete the practical work.

Each session follows the same format:

1. Introduction (by tutor) 2-3 minutes

2. Tutorial and demonstration 15-20 minutes

3. Summary (by tutor) 2 minutes

4. Practical exercises variable

5. Recap, feedback and questions

Audience and course pre-requisites
This course is primarily intended for experienced Askia scriptwriters and
programmers who should already be familiar with the Askia software and have
a working knowledge of all the material covered in the Askia Design course
(Course 100).

Module topics
Session 150-1 Askiascript 2.0 Basics: Objects and Operators

Session 150-2 Logical structures

Session 150-3 Variables and keywords

Session 150-4 Advanced loops

Course 150: Askia Script 2.0 Introductory Training • Participant’s Coursebook

6

Related course
In addition, the single session short course Data Editing (Course 410),
combines learning from both this course and also the Introduction to Askia
Tools (Course 400). For audiences already familiar with the content of the
Tools course, it may be useful to continue immediately on to Course 410 after
completing session 150-4 in this course.

Recommended learning pathways
All the modules of this course are considered to be ‘core modules’ and should
be followed in sequence.
One day plan Two day plan

Morning Day 1 (morning or afternoon)

Module 1 Module 1
Module 2 Module 2

Afternoon Day 2 (morning or afternoon)
Module 3 Module 3
Module 4 Module 4

Session 150-1 Askiascript 2.0 Basics: Objects and Operators

7

Session 150-1 Askiascript 2.0 Basics:
Objects and Operators

Outline

Topics presented
In this session, we will introduce you to:

• The concept of an askiascript

• Objects and Properties

• Useful operators

Learning outcomes
At the end of this session you will understand:

• How askiascript interacts with the different Askia modules

• How and where to add askiascript definitions

• How to use questions as objects in your scripts

• Which properties to use when referring to question objects

• How to define and use operators within scripts

Course 150: Askia Script 2.0 Introductory Training • Participant’s Coursebook

8

Material covered

What is a script?
Askiascript is an extension to askiadesign that allows you to program Askia at
the time it is executing a questionnaire, so that you can enhance how
questionnaires are delivered or how they collect data, and you can use them
to automate tasks which may otherwise require manual intervention to
achieve.

Askiascript consists of an easy-to-learn set of syntax commands and
keywords which interact with the normal variables or questions that you create
in askiadesign. They allow you to perform tasks before or after questions are
displayed, or at the beginning or the end of an interview. There are many
different applications for scripts, and many different occasions when they can
be useful.

You can define scripts in the askiadesign module, in the questionnaire
routing. Your scripts can perform tasks or instructions during the interview,
either before, during or after a question. You can also create scripts “inline”
inside the text displayed in question or answer captions.

Scripts defined in the routing
You can create a script at two places in a routing instruction:

• To make a routing position; these scripts must end up returning a true
or a false result, to control whether the routing is followed or skipped.

• To create a value; this is often to set the contents of a variable. It must
return the right kind of value (e.g. numeric or string) to match the
variable whose contents it is setting.

Note: The above script types are executed during the interview. A special edit
version of routing scripts (covered in 150-5) lets you edit data after the
interview is complete, to correct the data.

To create a script in the routing:

1. In the toolbar, click routing mode, if you are not already in this mode.

2. Select condition:

3. Click the condition… to open the script editor.

4. In the script editor, enter your script:

Session 150-1 Askiascript 2.0 Basics: Objects and Operators

9

5. Click OK.

Unconditional scripts
Routing scripts that you want to execute on every occasion should be given
the condition true, so that no logical test is applied.

To create an unconditional script:

1. In the toolbar, click routing mode, if you are not already in this mode.

2. Select condition:

3. Click the condition… to open the script editor.

4. In the script editor, enter True:

5. Click OK.

6. In action, select set value.

7. In target question, select the question whose value you want to set in
your script.

8. Next to value if true, click … to open the script editor.

9. Enter your script.

10. Click OK.

Course 150: Askia Script 2.0 Introductory Training • Participant’s Coursebook

10

Questions as Objects
In askiascript, any question can be handled as an object. You can always
reference a question with its shortcut, for example:

Q1
Shortcuts containing spaces should be surrounded by carets (^). For example:

^Q2. Age^.
Objects have properties and methods:

• Object properties return information about different aspects of an
object (e.g. the question type);

• Object methods allow you to modify the result when interrogating the
property of an object.

Properties and methods are referenced by using the question name, then a
dot and the property or method name. For example:

Q1.Value

Working with Values
Value is the property you will use most often when writing scripts. In some
cases, value is implicit. At other times, you will need to write .value (e.g. when
adding one or more methods to the value property).

For example:

Gender.Value
will return 1 if the question contains the value 1 in the current interview.

• LongCaption and ShortCaption are properties that return the
question’s long caption and short caption respectively. They return
information from the question definition, as set up in askiadesign, not
the respondent’s answer. For example:

o Q3.LongCaption()

o Q3.Shortcaption ()

• LastName.Value.ToUpperCase() – here you must specify Value,
as it cannot be implicit if you add a method. The method always comes
after the property. For example:

o Q3.Value.ToLowerCase() = “bosch”

o Q3.Value.ToUpperCase() = “BOSCH”

There are several different kinds response values in Askia:

§ Numeric: numbers

§ String: open text – letters, numbers, punctuation, spaces

§ Sets: coded answers to single and multiple questions

§ Date, Time, and Date and Time

§ Boolean: logical values true or false

You must always match the right type of value with the operation you are
performing, the variable you are referring to, or to which you are assigning a
value. If you do not, the script will not execute, and a warning message will
appear.

Session 150-1 Askiascript 2.0 Basics: Objects and Operators

11

Sets and arrays
The responses to single and multiple questions are different from numeric or
text questions in that they consist of a series of answer possibilities. In the
case of multiple questions, they can also contain more than one answer after
the question has been asked.

Response data for multiple questions can be referred to in scripts as sets.
This consists of the response numbers, separated by semi-colons, within curly
brackets. For example, if a respondent selected responses 1, 3 and 5, this
would be referred to as:

{1; 3; 5}

Askiascript provides functions for comparing two or more sets, and for
manipulating the values in a set. For details, please see 3. Comparing sets of
values on page 14 and Working with sets and arrays on page 26.

Response properties
Responses, and their methods and properties.

Like questions, responses are objects, and have various properties and
methods.

The following special properties allow you to access much more information
about single and multiple questions:

• Responses (returns the entire list of responses for a closed question);

• AvailableResponses (returns the list of available responses in the
order of display);

• Answers (returns the list of responses selected by the respondent, in
the order selected).

For example, if the responses 6 and 4 (“Lawn edger” and “Chain saw”) are
selected at Q1, these script snippets will give the following results:

Script Result Notes
Q1.Responses.Index 1;2;3;4;5;6;7;8;9 This is all of the responses

defined in the question, no
matter what the respondent
selected.

Q1.AvailableResponses.
Index

3;1;4;2;8;6;9;7;5 Assuming the response
order is randomised, and
this was the order they
were presented to the
current respondent.

Q1.Answers.Value 6;4 The responses selected by
the respondent.

Q1.Answers.EntryCode 21; 4 If the entry code for
response 6 is 21.

Q1.Answers.Caption Lawn edger; Chain
saw

Q1.Answers[2].Index 4 The second answer
selected by the respondent.

By using square brackets,
you can refer to a specific
item in an array. This can

Course 150: Askia Script 2.0 Introductory Training • Participant’s Coursebook

12

Script Result Notes

be used for Responses,
AvailableResponses,
Answers, etc.

Q1.Value 6;4

Q1 6;4 This is equivalent to
Q1.Value. The Value
property is implicit.

Operators

1. Comparing numeric values
The following operators allow you to compare numeric values:

Equal to (=) True if the first value is equal to the second value. For
example:

Age = 24

is true if the value in Age is 24.

Not equal to (<>) True if the first value is not equal to the second value.

Age <> 24

is true if the value in Age is not 24.

Greater than (>) True if the first value is greater than the second value.

Age > 24

returns is true if the value in Age is greater than 24.

Greater than or equal to
(>=)

True if the first value is greater than or equal to the
second value.

Age >= 24

is true if the value in Age is greater than or equal to
24.

Less than (<) True if the first value is less than the second value.

Age < 24

returns true if the value in Age is less than 24.

Less than or equal to (<=) True if the first value is less than or equal to the
second value.

Age <= 24

is true if the value in Age is less than or equal to 24.

2. Comparing string values
If (Q1.Value.Trim().ToLowerCase() = "string trimmer")
Then
 Return True
Else
 Return False
EndIf

Session 150-1 Askiascript 2.0 Basics: Objects and Operators

13

Useful object methods for strings
An Object Method provides something that you can perform on an object,
such as to provide a value or perform a test. Object methods are always
specific to the type of object being referenced. Here we describe several
methods that are useful when working with string questions.

The following methods are useful when working with string questions:
Equal to (=) True if the first string is equal to the second string. For

example:
Q1.Value.Trim().ToLowerCase() = “string trimmer”

is true if the string in Q6 is “bosch” and false if the string in
Q6 is “black & decker”.

Not equal to <> is true if the first string is not equal to the second
string.
Q1.Value.Trim().ToLowerCase() <> “string trimmer”

is true if the string in Q6 is not “bosch”.
Left() Returns the specified number of characters from the left of

the string. For example:
Q6.Value.Left(3)

Returns “bos” if the string in Q6 is “bosch”
Right() Returns the specified number of characters from the left of

the string. For example:
Q6.Value.Right(2)

Returns “ch” if the string in Q6 is “bosch”
IsNumber() True if the string contains a pure number; false if it does

not.

Q6.Value.IsNumber()
Is true if the string in Q6 is “5”.

Other useful object methods for strings
If you are familiar with regular expressions, you can use them in your scripts
to perform complex comparisons. Note that regular expressions are not part of
the scope of this course.

Two examples

1. To check the format of an email address:
Dim email = "askia@askia.com"
email.IsMatch("\w+@\w+\.[a-z]+")

Note: there is built-in method for this so email.IsEmail() will produce the
same result

2. This script will check if a string is a proper UK number:

Dim rgUkPhone = "(\+|00)\s*\d{2}(\s?\d{3}){2}\s?\d{4}"
("0044 207 689 5492").IsMatch(rgUkPhone) ' => true

Course 150: Askia Script 2.0 Introductory Training • Participant’s Coursebook

14

3. Comparing sets of values
Some operators allow you to compare specific groups of items in multi-coded
questions. A simple equals comparison (e.g. Q1 = 1) will not work with a
multi, because more than one response might be selected.

To refer to a set of values we use curly brackets {} and separate the values
inside with semi colons. For example:

{1;2;5;8}

We can use the “To” keyword to specify ranges of numbers:
{1 to 5;7;9 to 12;15}

is equivalent to
{1;2;3;4;5;7;9;10;11;12;15}

The operators are as follows:
Has Checks that at least one of the referenced response items

was selected. If this is the case, the function returns 1;
otherwise, it returns 0.

Q1 Has {4;5;6}
will return 1 if either the fourth, fifth or sixth were selected.

HasNone The opposite of “has”. It returns 1 if none of the specified
response items were selected by the respondent.

Q1 HasNone {4;5;6}
will return 1 if none of the fourth, fifth and sixth responses
were selected.

HasAll Checks that all of the referenced response items were
selected. Note that other responses may be selected too, and
the function will still return 1. For example:

Q1 HasAll {4;5;6}
will return 1 if the respondent answered 4, 5 and 6.

HasAndNoOther Checks that at least one of the specified responses was
selected by the respondent. However, if any responses not in
the list were selected, then the function returns 0. For
example:

Q1 HasAndNoOther {4;5;6}
returns 1 if the respondent selected response 4. If she
selected responses 1 and 5, the function will return 0
(because 1 is not in the list).

HasAllAndNoOther
or =

Similar to “HasAll”, but it returns 0 if the respondent selected
any responses other than those in the list. In other words, the
selected response must match the list exactly. So:

Q1 HasAllAndNoOther {4;5;6}
will return 1 if the respondent answered 4, 5 and 6, but 0 if
she answered 1,4,5 and 6 (because 1 is not in the list of
qualified values).

Note that the above example is equivalent to Q1 =
{4;5;6}.

Session 150-1 Askiascript 2.0 Basics: Objects and Operators

15

Recap
In this session, we have:

• Looked at the question and response objects.

• Seen some of the operator comparisons that can be made in your
scripts.

• Looked at some of the useful functions for examining string variables

• Seen how regular expressions can be combined with askiascript
expressions.

Practical exercises

Exercise 1: Using script to set a variable
Follow these steps:

1. Open askiadesign. A new, blank QEX will be created.

2. Create a Gender question (closed) with the responses Male and Female.

3. Create an Age question (numeric).

4. Create an AgeGroup question (closed) with the responses Younger than
25, 25 to 34 and 35 or older as the answers.

5. Now define routing instructions to set the appropriate category in the Age
Group question, according to the value in Age. Do this by creating three
separate routing instructions, each one checking for a specific age range
in Age, and setting the value in AgeGroup accordingly. So, your first
routing will set AgeGroup to 1, where appropriate, the second will set the
value to 2, and so on.

Note: Later in the course, you will learn how to do this with only one
routing condition, but for now create three separate routing instructions.

Exercise 2: Editing your script
Follow these steps:

1. Add a RespName question (type: open), and position it at the start of your
QEX.

Note that we should not call a question “Name”, as this is a reserved word
in Askia, so we should use an alternative (in this case, “RespName”).

2. Add a second question RespNameTrimmed (type: open) and place it
after RespName. Ensure that the question’s visible during data entry
property is not selected, so that it is hidden during interviewing.

3. Add a routing as follows, to remove any spaces from the start and end of
the name given at RespName, and store that result in
RespNameTrimmed.

Course 150: Askia Script 2.0 Introductory Training • Participant’s Coursebook

16

When defining your routing, click condition…. Then, simply enter true.
This ensures that the condition is always executed. Click OK.

Set up the other settings of the condition as follows:
Start question: RespName

 Action: set value

 Target question: RespNameTrimmed

 Value if true: write an appropriate expression here

4. Later in the QEX, add a routing to display the contents of
RespNameTrimmed:

 Condition: true (ensures the routing is always run)

 Action: Show message

 Message text: Name is ??RespNameTrimmed??.

5. Test your questionnaire. You should see the contents of the
RespNameTrimmed variable displayed by your second routing.

6. Now go back into your first routing, and change it to convert the answer to
capital letters.

7. Test the questionnaire, to see the results of your change.

8. If time permits, try to repeat steps 6 and 7 two more times, using different
string handling operations each time, as suggested by the routing editor.

Session 150-2 Logical structures

17

Session 150-2 Logical structures

Outline

Topics presented
In this session, we will introduce you to:

• If/Then/Else structures

• The Return statement

• Comments in script

Learning outcomes
At the end of this session you will be able to:

• Create complex logical structures using If/Then/Else

• Write more script that is more efficient to write and easier to
understand

Course 150: Askia Script 2.0 Introductory Training • Participant’s Coursebook

18

Material covered

If …Then … Else structures
If/Then/Else structures allow you to execute blocks (sections) of script
according to specific conditions. For example, you might want to execute a
block of code only if a specific combination of answers has been given by the
respondent, and otherwise execute another set of code.

By using If/Then/Else structures, you can write more complex logical
statements, and your logical statements will be easier to understand when you
look at the script.

Syntax
The syntax is as follows:

If logical_expression Then
 ‘block of script to execute if logical_expression
is True
EndIf

Or
If logical_expression Then
 ‘block of script to execute if logical_expression
is True
Else
 ‘block of script to execute if logical_expression
is False
EndIf

Note: Else is always optional; you do not have to include it in an If structure.

Return statement
When a Return expression is reached, it immediately breaks the script flow
(all following lines are ignored), and returns the expression associated. For
examples:

Return
Return True
Return 1

Worked examples of If ... Then ... Else

If … Endif

If with else
If Q1 Has {4;5;6} Then
 ‘4, 5 or 6 was selected at Q1
 Return True
Else
 ‘none of these responses were selected at Q1

Session 150-2 Logical structures

19

 Return False
EndIf

If with elseif
ElseIf can be used in an If/Then/Else block in order to create logical
expressions with multiple outcomes. For example:

If (Age >= 18 And Age <= 25) Then
 Return 1
ElseIf (Age >= 26 And Age <= 35) Then
 Return 2
ElseIf (Age >= 36 And Age <= 45) Then
 Return 3
ElseIf (Age >= 46 And Age <= 55) Then
 Return 4
ElseIf (Age >= 56) Then
 Return 5
EndIf

Nesting If within If
If structures can be nested inside each other to create complex logical
expressions. For example:

If (Q1 Has {1}) Then
 ‘1 is selected at Q1

 If (Age >=56) Then
 ‘1 is selected at Q1 and Age>=56
 Return True
 EndIf

ElseIf (Q1 Has {2}) Then
 ‘2 (but not 1) is selected at Q1

 If (Age >=56) Then
 ‘2 (but not 1) is selected at Q1 and Age>=56
 Return True
 EndIf

EndIf

Comments
If (Q1 Has {1}) Then
 'Push Lawn mower owners

 If (Age >=56) Then
 'Push Lawn mower owners aged 56 and over
 Return True
 EndIf

ElseIf (Q1 Has {2}) Then
 'Riding Lawn mower owners

 If (Age >=56) Then
 'Riding Lawn mower owners aged 56 and over
 Return True
 EndIf

Course 150: Askia Script 2.0 Introductory Training • Participant’s Coursebook

20

EndIf

You can include comments in your scripts to make them easier for you or
others to understand. A single quotation mark or apostrophe (‘) introduces a
comment. The rest of the line is not executed. You should use comments
widely in order to make the meaning of the script to anyone who has to review
or maintain the script in future. For example:

‘this script returns True if 4, 5 or 6 is selected at Q1

Throughout the syntax explanations and code examples in this booklet, you
will see comments that help explain the code being described.

Using Has, HasAll and HasNone in If blocks
Conditions that refer to responses to a single or multiple questions, are best
used with these operators because they all deal with sets of answers.

Examples:
If (Q1 Has {1 to 5}) Then
 ‘User selected at least one of the first 5
responses
 Return 1
EndIf

If (Q1 Has {1 to 95}) Then
 ‘User selected at least one of the first 95
responses
 Return 2
EndIf

If (Q1 HasAll {3;4;5;6}) Then
 ‘User selected responses 3, 4, 5 and 6
 Return True
EndIf

If (Q1 HasNone {8;9}) Then
 ‘User didn’t select responses 8 or 9
 Return 1
EndIf

Expressions

Brackets in expressions
Curly brackets {} are used to enclose response values, for example ranges.
Examples:

{3;4;5;6}
{1 to 5}
{1 to 6;8;9}

Note that normal brackets are also used as part of Askia Script syntax, for
example Q1.Value.Trim().

Session 150-2 Logical structures

21

Normal brackets can also be used to improve the clarity of logical expressions
(for example to surround IF conditions), but this is not mandatory. For
example:

((Gender Has {1}) And (Q1 Has {9})) Or ((Gender Has {2})
And (Q1 Has {9}))

Logical expressions: using AND, OR and NOT
AND, OR and NOT determine how multiple expressions are combined.

AND The condition is true if both expressions are true. For
example:

If (Age >= 18 And Age <= 25) Then
This is true if the value in Age is equal to or greater than
18 AND it is less than or equal to 25.

OR The condition is true if either expression is true. For
example:

Q1 has {1} OR Q1 has {2}
This is true if the respondent selected either response 1 or
response 2 at Q1.

NOT Allows you to reverse an expression, so the condition will
evaluate true if the expression is false, and vice versa. For
example:

NOT(Q1 has {1} OR Q1 has {2})
The expression is reversed so that it is true if
neither response 1 nor 2 was selected at Q1.

Note: more advanced expressions are covered in the subsequent sessions of
this course.

Inline script
Inline script allows you to include askiascript code snippets in other contexts,
such as question captions, response captions or online interview screen
definitions.

You will already know this syntax for text substitution in a question or
answer caption:

??Q1??

This will display the answers given to Q1

You can also write script to create the value to display directly within a
question or answer caption:

{% If condition Then %}
 ‘Text alternative 1 to display
{% Else %}
 ‘Text alternative 2 to display
{% EndIf %}

You can also use the askiascript engine using {% askiascript %} to place
askiascript code into a question or answer caption.

Course 150: Askia Script 2.0 Introductory Training • Participant’s Coursebook

22

You can use {% askiascript %} to execute a script without output and
{%= askiascript %} to execute a script and write the result.

For example:
{% If (Q1 HasAllAndNoOther {1;2}) Then %}
 Has both types of mower, but no other tools
{% ElseIf (Q1 HasAndNoOther {1;2}) Then %}
 Has only a mower (or either type, or both)
{% ElseIf (Q1 HasAll {1;2}) Then %}
 Has both types of mower and may have other tools
{% ElseIf (Q1 Has {1;2}) Then %}
‘Has a mower (or either type, or both) and may have other
tools
{%ElseIf (Q1 HasNone {1;2}) Then %}
 Does not own either type of mower
{% EndIf %}

The contents of the caption will change according to the response given to
Q1.

Recap
In this session, we have:

• Created control structures using If/Then/Else

• Looked at the syntax required to define conditions

• Introduced the Return statement

• Added comments to script

• Inserted askiascript snippets into text as “inline script”

Practical exercise

Writing control structures
Follow these steps:

Follow these steps:

1. Delete the routings you created in the first exercise.

2. Create just one routing to set the value of the Age Group variable,
according to the value in Age. You will need to use an If/Then/Else
structure.

3. Now put another control structure around the If/Then/Else, to test that
Age contains a valid response between 16 and 99, and only recode the
variable when it is.

4. Create a Return which will be True if Age was coded into the new
variable (i.e. it was in the range 16..99) and False if it was not. Think about
the best way to create that control structure.

Session 150-2 Logical structures

23

5. Add the following question to your survey:

Shortcut: Q1

 Long caption: Which of the following financial products do you have?

 Type: closed multi

 Responses: Investment plan, Life insurance, Mortgage, Pension plan

6. Add the following question:

Shortcut: Q2

 Long caption: Which of the following financial products are you
considering buying in the future?

Type: closed multi

Responses: Life insurance, Pension plan, None of these

7. Add a new routing containing a script that means that Q2 is asked only if
either life insurance or pension plan were selected at Q1, but not both. It
should also be asked if neither response was selected at Q1.

8. It is especially important with scripting to carry out thorough testing, to
ensure that your scripts have the effect you want. Test your script to
ensure that is working, and amend it if necessary.

9. Add an inline script into Q2’s long caption, so that the caption varies
according to the number of responses selected at Q1 from Life insurance
and Pension plan:

• If one response is being presented: Are you considering buying the
following financial product in the future?

• If both responses are being presented: Are you considering buying
either of the following financial products in the future?

10. Now go through the script you have created and add comments, to make it
more understandable to anyone else who has to read it.

11. Optional: If time permits, try to experiment by creating another version of
this routing using different logical options, e.g. reverse the logic using Not,
or using And and Or. See if you can improve on your first version.

Session 150-3 Variables and keywords

Outline

Topics presented
In this session, we will introduce you to:

• Virtual variables

• Intersection and Union set functions

• Count property

• The SelectRandom function

Learning outcomes
At the end of this session you will know:

• How to create new array variables in your script

• How to perform logical tests and combinations on arrays

• How to detect the number of elements in an array

• How to use scripts to make random selections from questions

Course 150: Askia Script 2.0 Introductory Training • Participant’s Coursebook

26

Material covered

Virtual variables
Virtual variables (also known as “declarative” variables in some programming
languages) allow you to create additional variables for use inside the script
which only exist within the script:

Creating a virtual variable

Assigning values and performing comparisons

Defining the virtual variable type
§ The type of a virtual variable is determined when you first assign a

value to it.

§ Subsequently, you can only assign values of the same type to it; if you
try to assign a value of a different type, you will get an error message.

Type Example

Numeric Dim my_var = 0

String Dim my_var = “”

Array Dim my_var = {}

Date Dim my_var = #25/03/2011#

Time Dim my_var = #16:32:00

Date and time Dim my_var = #25/03/2011 16:32:00#

Boolean (logical) Dim my_var = true

Note that Boolean variables accept one of only two values: true or false. True
is given the internal value 1 and false is given the internal value 0. This means
it is possible treat a Boolean virtual variable like a numeric variable – but it will
only ever have the value 1 or 0.

Working with sets and arrays

Union or ‘+’
Union merges the values contained in two different sets, such as the
responses to two questions. You can use union or + interchangeably.

For the value to be present in the union of two sets, it must be present in
either of the sets being combined, which includes any values which are
present in both of the sets.

Assuming Q1 contains 6 and 4, and Q1_S contains 6, 1 and 8:
Q1 Union Q1_S

Session 150-3 Variables and keywords

27

The result will be {6; 4; 1; 8}

Intersection
Intersection retrieves the common values of two sets. It compares the
selected responses given to two questions, and discovers which responses
were selected in both.

For the value to be present in the intersection of two sets, it must be present in
both of the sets being combined.

Assuming Q1 contains 6 and 4, and Q1_S contains 6, 1 and 8:
Q1 Intersection Q1_S

The result will be {6}

Note that the order of the returned items is determined by the leftmost set (the
one before the intersection keyword).

Operations with sets
You can intersect a variable with a constant set. Examples:

Example Result
{1 to 6} intersection Q1 If Q1 contains the set {6; 3} then the

result will be {3; 6} because the order
is determined by the set on the left

Q1 intersection {1 to 6} If Q1 contains the set {6; 3} then the
result will be {6; 3} because the order
is determined by the set on the left

You can start any expression with the empty set { } to ensure that the
expression is evaluated as a set and returns a set, e.g.

{} + Q3 + Q4 HasAll {5; 6; 7}

Returns true if all of the responses 5, 6 and 7 were selected at Q3 or Q4 (e.g.
it would be true if 5 and 7 were selected at Q3 and 6 and 7 were selected at
Q4).

Using subtraction with sets
You can use minus (“-”) to remove items. It means intersection with not these
items.

Size() function
The size function is particularly useful when working with sets and
combinations of sets as it tells you how many values the set contains – i.e. the
number of answers given.

For example, the following script returns the number of responses in Q1
and Q1_S combined (as a union of the two):
Size(Q1.Value + Q1_S.Value)

Note that when we use the Size keyword, we should also use Value, to
ensure we retrieve the correct value.

Course 150: Askia Script 2.0 Introductory Training • Participant’s Coursebook

28

The following script returns the number of responses selected by the
respondent from the first five codes to Q1:

Size(Q1.Value Intersection {1 to 5})

The following script returns the number of responses selected by the
respondent from codes 1, 3 and 4:
Size(Q1.Value Intersection {1;3;4})

Note: If you combine two questions in this way with a union, then duplicate
responses will only be counted once.

.SelectRandom(n) method
SelectRandom allows you to select a specific number of values at random
from a set. For example, this could be the responses given to a multi-coded
question. The syntax is as follows:

.SelectRandom(n)

Example Result
{1 to 10}.SelectRandom() Returns one value randomly from 1 to

10 (such as 3).
Dim i = {1 to 10}
i.SelectRandom(2)

Returns two values randomly from 1
to 10 (such as 3 and 7).

{5 to 10}.SelectRandom(3) Returns three values randomly from 5
to 10 (such as 5, 6 and 9).

Q4.Value.SelectRandom(2) Returns two values randomly from
the ones selected in Q17 (such as 2
and 4).

(Q1 + Q4).SelectRandom() Returns one value randomly from the
ones selected in Q1 and Q4 (such as
3).

The sequence of returned numbers reflects the order of the values in the
array. So {1 to 10}.SelectRandom(3) will return 3 values but the lower
will always be the first one, the next highest will be always the second value,
and so on, because the array is ordered from 1 to 10. If you want to shuffle
these selected responses then you can use the Shuffle() method.

.Shuffle() method
Use .Shuffle on an array to return the array in a randomised order

Q1.Value.Shuffle()

This returns all the values in a random order

.Shuffle can be used with .SelectRandom for a random selection in a
random order

Q1.Value.SelectRandom(3).Shuffle()

This returns three randomly selected values in a random order.

Session 150-3 Variables and keywords

29

So, if Q1_S contains {1; 2; 5; 7}, the .SelectRandom(3) method will select
three items, such as {1; 5; 7} and shuffle will place these in a random order,
e.g. {5; 7; 1}

{1 to 10}.SelectRandom(3).Shuffle()

It will therefore return three values randomly and shuffled (such as 7; 2; 5).

Count property
Use Count to return the number of items in an array. It can be used as an
alternative to the Size function to obtain the number of answers to a question.

For example, if Q1 has four responses, then
Q1.Value.Count

returns 4.

There is an alternative way to achieve the same effect. The following script
returns true if the q1 has at least one response selected between 1 and 5:

Dim my_array = Q1 Intersection {1 to 5}

If my_array.Count > 0 Then
 Return true
Else
 Return False
EndIf

Recap
In this session, we have explored:

• Using Dim (dimension) to declare new array variables

• Combining and performing logic on sets or array variables using
Union and Intersection

• Subtracting items from a set with “-”

• Using the Count property to detect the number of items in an array

• Using SelectRandom to randomly pick items from an array

• Using Shuffle to randomise the order of a set

Practical exercises

Exercise 1: Creating question loops
Follow these steps:

1. Create a Brand Spontaneous awareness question with 10 brands and
None.

• Call it “TopOfMind”.

Course 150: Askia Script 2.0 Introductory Training • Participant’s Coursebook

30

• For the list of brands, come up with own list. You might use Coca Cola,
Dr Pepper, Evian, Minute Maid, Orangina, Perrier, Pepsi, Schweppes,
Sprite, and/or one or more brands from your country.

• Ensure you include a None category.

2. Create a Brand Spontaneous awareness variable as follows:

• Call it “Others”.

• Give it the same responses as Top of Mind, including the None
category.

• If None was selected in the Top of Mind, then do not show ‘Others’ to
the respondent, and set its value to None.

• If one brand was selected in Top of Mind, then show the list of brands
without the one selected in Top of Mind.

3. Create an “Assisted” Brand awareness variable with the same list of
brands.

• Call this question “Assisted”.

• Do not show the brands selected in Top of Mind and Others.

• If the respondent selected every brand in the combination of Top of
Mind and Others, then do not ask Assisted.

4. Create a “Favourite” Brand variable with the same list of brands.

• Call this question “Favourite”.

• Only show the brands selected in Top of Mind + Others + Assisted.

• Only ask this question if at least 2 brands were selected in Top of Mind
+ Others + Assisted.

• If only one brand was selected in Top of Mind + Others + Assisted,
then do not show the Favourite variable and code it as the selected
brand.

5. Create a “Random Selection” variable where you will select 3 brands at
random from the ones known (Top of Mind + Others + Assisted).

6. Create a Loop to ask about the 3 brands selected.

• Ask if the respondents will buy this product in the next month.

• To do this, create a yes/no question which will be asked for each of the
3 brands.

• The loop could be named “Loop Buy” and the question “Buy”.

• Do not ask the loop if none of the brands were selected.

Exercise 2: Using Dim
You will now be creating a script to check that the responses to three
questions add up to 100.

Follow these steps:

1. Add the following chapter to your survey:

 Question type: Chapter

Session 150-3 Variables and keywords

31

 Long caption: When you are considering your financial future, how
important are the short term (the next five years), medium term (five to
ten years) or long term (more than ten years)? Please allocate 100
points between these three time periods, to indicate your priorities.

2. Add the following three numeric questions:

 Question names: Short_term, Medium_term, Long_term

 Question type: Numeric

 Minimal value: 0

 Maximal value: 100

3. Add a further question:

 Question name: Priority_total

 Question type: Numeric

 Make the question invisible during data entry.

4. Add one or more routing conditions to add up the totals, using declared
variable(s) to keep track of the running total. Store the running total in
Priority_total (using the Set value routing action).

5. Add a new chapter, and have its long caption display Priority_total. Add a
message to indicate how many further points they need to allocate. Add
routing logic to ensure that the chapter is only displayed if Priority_total is
less than 100.

Session 150-4 Advanced Loops

33

Session 150-4 Advanced Loops

Outline

Topics presented
In this session, we will introduce you to:

• The loop properties of questions defined within a loop

• The loop built-in test values IsLastIteration and CurrentIteration

• The For / Next loop

• The Break directive

Learning outcomes
At the end of this session you will understand:

• How to perform tests and computations of the different elements of
array variables within loops

• How to know, when executing a script, how many times a loop has
executed

• How to take particular actions when you are on the last iteration of a
loop

• How to create loops that will repeat a defined number of times – even
if this number is calculated in real time

• How to create loops that will repeat until a particular defined state is
reached

Course 150: Askia Script 2.0 Introductory Training • Participant’s Coursebook

34

Material covered
In this session, the tutor will be demonstrating the nested loop in the example
QEX (PowerTools_with_hh_loop_WITH_routings.qex). Please pay close
attention to the narrative you will find below when leading this session.

Questions residing in standard loops
Any question defined within a standard loop (such as a loop to create a
question grid) has additional object properties pertaining to the loop.

When the start question of a routing is set on a question which is inside a
loop, the routing is executed on each of the iterations.

For example: we have a question within a loop called Q2 which asks how
each type of power tool owned is powered. If the start question of the routing
is on the loop, or on the question, then it is the same as having three routings:
one on each type of power source (gas, corded or cordless).

In a routing condition where the start question is in a loop, the value property
of the question always references the question in the current iteration. If you
want to access values in other loop items, you can use the Iteration() method.

Example:
If the first response (“Gas”) is displayed on the first loop iteration or Q2.

Q2.iteration(1).Value = 1

will return “Gas”.

Other examples:
Example Result
Q2.Iteration(1).Value Returns the value for the first

item.
Q2.Iteration(1).Answers.Index Returns the value for the first

item.
Q2.Iteration(3).Answers.Caption Returns the caption for the

third item.

Loops within Loops
The principle is the same with a loop of loops. If we have a loop of loops with
27 responses (3 fuel types for each of 9 power tools), then if a routing’s start
question is the loop statement, or the question inside the second loop, it is
the same as having 27 routings. If the start question is the first loop or on a
question inside the first loop but outside the second loop, then it is equivalent
to 9 routings.

In loops of loops, Iteration lets you indicate the loop shortcut.:
Q2_S.Iteration(Q2Loop:3,ResidenceLoop:2)

This is equivalent to
Q2_S.Iteration(ResidenceLoop:2,Q2Loop:3)

Session 150-4 Advanced Loops

35

Note: If the start question of the routing is outside the loop, the iteration
method is mandatory.

Object methods for loops
There are two object methods relevant to objects created inside loops which
can be used in comparisons. These methods will only return a value when
used on an object within a loop.

IsLastIteration and CurrentIteration
There are two object methods relevant to objects created inside loops which
can be used in comparisons. These methods will only return a value when
used on an object within a loop.

IsLastIteration and CurrentIteration
You can test at what point in the execution of the loop your script has reached.
IsLastIteration is true if the script has reached the final iteration of the
loop.

Q2loop.IsLastIteration

If you need to refer to a specific iteration, then you can use the
CurrentIteration property. This returns, as a numeric value, the current
iteration number of the loop.

Q2Loop.CurrentIteration = 9

Is true if this is the ninth iteration of the loop.

An alternative way to achieve this is:
Q2loop.CurrentIteration.EntryCode = “09”

AllValues property
To obtain an array of all the answers to a question in a loop, we use the
keyword AllValues.

Examples:

• If Q10 is a single question inside a loop three iterations,
Q10.AllValues might return
 {2; 1; 8}.

• If Q11 is a multi-coded question, Q11.AllValues might return
{2; 5; 8; 1; 4; 8}

For/Next Loops
A FOR/NEXT loop is an entirely different construct to a question loop. Used in
a script, it allows you to create repeating, or “iterative” logic at any point within

Course 150: Askia Script 2.0 Introductory Training • Participant’s Coursebook

36

your script. FOR/NEXT loops do not create repeated questions in the way
ordinary loops do.

Syntax:
FOR control_variable = start TO end
 [section of code to repeat]
NEXT control_variable

control_variable - will be used as the loop counter

start - is the initial value of variable

end - is the finish value of variable

• The control variable (loop counter) has a differing value each time through
the loop.

• The 'start' and 'end' values specify what the control variable's values will
be and how many times the loop is executed.

• Every time the 'next' line is reached, the value of variable is incremented
by 1 (+1).

• When the value in the control variable is outside the start to end values,
the looping stops and program flow continues from the line after the next
command.

• FOR…NEXT loops can be nested (remember to use a different variable for
each loop).

Example
The code used is as follows:

Dim Arr_cordless = {}

Dim i

Dim j

 'Parent loop iteration

i = Residenceloop.CurrentIteration

For j=1 to Q2loop.Responses.Count

 If Q2.Iteration(Residenceloop : i, Q2loop : j)=3 Then

 Arr_cordless = Arr_cordless.Insert(j)

 EndIf

Next j

' return array of cordless tools

return Arr_cordless

Note that it is not good practice to manipulate the number of times that a loop
might iterate by using a variable for the end value and then altering the value
of that variable during the execution of the loop.

Session 150-4 Advanced Loops

37

For example, if our loop begins For LoopCount=1 to x, then we should
not change the value of x inside the loop. If we do:

• This can give rise to an endless loop during an interview, and
unpredictable results.

• You should always use either a system-defined value, a variable that will
not change, or a constant, so that the outcome is predictable (e.g. For
LoopCount = 1 to Q2loop.Responses.Count).

• Inside the loop, if you want to check the value in the control variable, you
should put the expression in parentheses to avoid changing the value. For
example:

If (LoopCount = 1) then ‘check whether this is the
first iteration of the loop

This ensures that you checking the value of the control variable (in this
case, LoopCount), rather than setting it.

Break command
You can use break to end a FOR/NEXT loop before the control variable
reaches the end value.

Normally, a loop will repeat a set number of times, defined by the difference
between the start and end values. However, there are occasions where you
might want the loop to end before the end value has been reached, and for
this you can use the Break keyword.

For example, suppose we want to check whether the respondent picked the
first product category before the second one at Q1.

dim i

dim picked_a = False

for i = 1 to Q1.answers.count

 if Q1.answers[i] = 1 then

 picked_a = true

 break

 elseif Q1.answers[i] = 2 then

 break

 endif

next i

return picked_a

Course 150: Askia Script 2.0 Introductory Training • Participant’s Coursebook

38

Recap
In this session, we have looked at:

• Using loops to test and update elements of array variables

• Checking to see which iteration of a loop is currently being performed
with the two built-in loop values CurrentIteration and
IsLastIteration

• Writing Loops that repeat a defined number of times with For … Next

• Loops within loops

• Using AllValues to aggregate the values from loop questions

• Using the Break directive to exit a loop

Practical exercise

Writing script loops
Follow these steps:

1. Ask the respondents about their hotel stays in the last year. Find out what
proportion of their stays was for business, personal or other purposes. For
each type of stay, ask them to allocate a percentage (0%-100%).

You can achieve this by having a numeric question inside a loop.

The sum of the percentages should equal 100. If it does not equal 100%,
then show a warning message.

Hint: you can use the property AllValues.Sum to check the value of the
numeric question.

 Note: To show the current statement in the long caption, you can use
??ShortCutOfTheLoop??. Drag the loop from the left-hand panel into the
Long Caption of the question to insert it automatically.

2. Create another loop with 5 brands and 2 questions attached.

Would you consider buying this brand: [brand name]?
Responses: Yes, No

Why would you not buy [brand]?
Only ask if no was selected in the first question (one screen per
brand).

3. Outside the loop, create a summary multiple question including all the
brands with a yes selected. Ask the respondent to select his or her first
choice.

Appendix: Example questionnaire

39

Appendix: Example questionnaire

POWER TOOLS SURVEY
(North America)

SCREENER SECTION

S1 (Screener). Do you have any power that you use tools at home? By power tools we
mean tools like a lawn mowers, hedge trimmers, chain saws, pressure washers or
power hand tools.

• Yes – Continue
• No - Close

S2 (Screener) Are these tools that you own personally, or are they tools used for
business or trade?

• Only tools used for business or trade - Close
• Only tools owned personally - Continue
• A mixture of both - Continue

S3 (Screener) Do you also own a second residence for your own use, such as a vacation
home?

• Yes - Continue
• No - Continue

MAIN QUESTIONNAIRE

Q1. Which of these power tools do you own?
IF yes at S3, use this text instead: Which of these power tools do you own, and normally
keep at your main home? For the moment, we will just focus on those those at your
main home.]

• Push Lawn mower (1)
• Riding Lawn mower (2)
• Hedge trimmer (3)
• Chain saw (4)
• String trimmer (5)
• Lawn edger (21)
• Pressure Washer (6)
• Hammer drill or power drill (7)
• Power sander/orbital sander (8)

Course 150: Askia Script 2.0 Introductory Training • Participant’s Coursebook

40

Q2. What/And what/And finally, what kind of [power tool at Q1] is it?
Use the text “What” the fist time the question is presented, “And what” for each subsequent
time, and use “And finally“ the last time Q2 is presented, provided if it has been presented
more than twice.

• Gas
• Electric (corded)
• Cordless /rechargeable

Note: the following power options are allowed at Q2
 Gas Electric Cordless/rechargeable
Push Lawn mower Y Y Y
Riding Lawn mower Y n Y
Hedge trimmer Y Y Y
Chain saw Y Y n
String trimmer Y Y Y
Lawn edger Y Y Y
Pressure Washer Y Y n
Hammer drill or power drill n Y Y
Power sander/orbital sander n Y Y

If 2 or more cordless/rechargeable tools.
Q3. Are you aware that some power tool manufacturers offer interchangeable
rechargeable batteries or power packs that you share between your power tools?

• Yes
• No
• Not sure

If Q3.yes
Q4. Do you share batteries between any of these tools that you have?
Only present those selected which are battery-powered:

• Hedge trimmer
• String trimmer
• Lawn edger
• Hammer drill or power drill
• Power sander/orbital sander

Q1_S. Now we would like to focus on any power tools you may normally keep at your
second home. Which of these power tools do you own, and keep at your second home?
IF yes at S3, add: For the moment, we are just interested in those at your main home.]

• same answer list as at Q1

Q2_S. What kind of [power tool at Q1_S] is it?
Use the text “What” the fist time the question is presented, “And what” for each subsequent
time, and use “And finally“ the last time Q2_S is presented, provided if it has been
presented more than twice.

• same answer list as at Q2

Appendix: Example questionnaire

41

If 2 or more cordless/rechargeable tools. AND Q3 was not asked:

Q3_S. Are you aware that some power tool manufacturers offer interchangeable
rechargeable batteries or power packs that you share between your power tools?

• same answer list as at Q2

If Q3.yes or Q3_S.yes
Q4_S. Do you share batteries between any of these tools that you have?
Only present those selected which are battery-powered:

• same answer list as at Q2

Q5. Which of these tools are you likely to replace in the next 12 months?
(Only present those selected at Q1 or Q1_S)

• Push Lawn mower
• Riding Lawn mower
• Hedge trimmer
• Chain saw
• String trimmer
• Lawn edger
• Pressure Washer
• Hammer drill or power drill
• Power sander/orbital sander

For each selected, if power source is currently not cordless, ask:
Q6. Would you consider purchasing a rechargeable/cordless [tool at Q5]?
(If more than one item selected “And similarly, …”

• Yes
• No
• Not sure

If Q6.no ask:
Q7. What are your reasons for not choosing a cordless or rechargeable [tool at Q5]

• Open text response

From the combined answers to Q1 and Q1_S, randomly select no more than 3 answers, and
repeat Q8 for each answer selected.
Q8. What feature do you like the most about the [selected tool at Q1/Q1_S] you
currently own?

• Open text response

